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The problem has been examined using a kinematic model for wall pliability, wherein 
a kinematic postulation of the wall boundary conditions is made. A form of the 
normalized wall-displacement and its phase are used as additional parameters in an 
extended eigenvalue problem. Using this technique the entire gamut of possibilities 
regarding stability of flow past (normally) pliable walls can be examined, yet without 
recourse to any specific material properties for the wall. Rather, the results based on 
the kinematic model can be used to back-calculate the material properties 
corresponding to any chosen model for the dynamics of the wall. A sample back 
calculation is discussed herein for the Benjamin-Landahl wall model, and based on 
this some predictions are made regarding both stabilization of the flow and physical 
realizability of modes. It is believed that the kinematic model will prove useful in 
further understanding of the problem, and in the design of stabilizing coatings. 

The results show that there are three important ‘mode classes’ (distinct from 
‘modes ’), namely the Tollmien-Schlichting (TS), resonant (R)  and Kelvin- 
Helmholtz (KH). Whereas the TS and R mode classes broadly agree with modes 
bearing similar names as found by earlier workers, the present K H  mode class is 
difficult to classify based on earlier work. Moreover, there are also important 
transitional mode classes in the regions of bifurcations of the regular mode 
classes. 

Two important concepts evolve in connection with the TS and R mode classes, 
namely the existence of ‘stable pockets ’ for the former and ‘unstable pockets ’ for the 
latter. It is also confirmed herein that there are conflicting requirements on the 
damping d to stabilize TS and R modes. Considering these points it has been 
suggested that TS and R modes be avoided by keeping soft surfaces as compliant 
coatings. However, this in turn leads to instabilities from one of the transitional 
mode classes. It is also seen that a soft surface that is also marginally active (i.e. 
having a small negative value of d )  could render even better stabilization. 

1. Introduction 
The interest in the problem of stability of laminar flow over a compliant surface 

was created mainly following Kramer’s (1957, 1960a, b, 1965) extensive studies on 
the locomotion of dolphins and his reported experiment on drag reduction on a body 
of revolution covered with a designed compliant coating. The coating itself was 
backed up by a substrate fluid of high viscosity. Kramer called this technique 
stabilization by distributed damping, his basic hypothesis being that the viscosity of 
the substrate fluid would damp out any possible laminar instabilities in the flow. This 
would result in the delay of transition so that the boundary layer would remain 
laminar, and thus considerable drag reduction would be effected. This was also his 
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hypothesis to explain the apparent superiority in hydromechanical eEciency of a 
dolphin as compared to a manmade underwater projectile of similar displacement. 

Following Kramer‘s work, the pioneering theoretical studies on the problem were 
done by Benjamin (1960, 1963) and Landahl (1962). This was followed by the works 
of Landahl & Kaplan (1965), Hains (1965) and others, and more recently by 
Carpenter & Garrad (1985, 1986). These works seem to have contradicted many of 
Kramer’s surmises. Moreover, experiments have been carried out to seek independent 
confirmation of Kramer’s results on drag reduction. These experiments seem not to 
have provided any confirmation of Kramer’s results. 

An cxccllent and succinct review of the past theoretical arid experimental works has 
been given by Carpenter & Garrad (1985), who have also given a fairly exhaustive list 
of references. The reader is therefore referred to their paper for details in this respect. 
However, Carpenter & Garrad have pointed out that the experiments subsequent to 
Kramer’s were not performed under quite the same conditions ; therefore these later 
results neither prove nor disprove Kramer’s original results. Carpenter & Garrad, on 
the basis of their theoretical investigations, also claim that it still might be possible 
to explain the successful drag reduction in Kramer’s experiments and that ‘Kramer- 
type coatings are theoretically capable of considerable transition postponcmcnt 
provided modal interaction does not occur ’. 

In the previous theoretical works, including that of Carpenter 8: Garrad, the basic 
flow considered is the boundary-layer flow over a flat plate. Almost all these works 
consider only normal pliability of the wall, the exception being Korotkin’s (1965) 
work in which both normal and tangential compliancy are considered. Carpenter & 
Garrad point out that the no-slip condition has been apparently incorrectly 
implemented in Korotkin’s work. Further, to the best of our knowledge, all the 
previous theoretical works consider the problem as a combined fluid-solid problem. 
This requires the separate specification of the dynamics of the fluid side and the solid 
side, and the matching of the two a t  the interface. The dynamics of the fluid side has 
been more or less standardized, in that the mean motion is described by the Blasius 
velocity profile, and the disturbances are described by the Orr-Sommerfeld equation. 
There is some margin for improvement in this area by considering non-parallel effects 
and boundary-layer growth. As regards the dynamics of the solid side, therc has 
apparently been continual improvement over the simple stretched-membrane model 
postulated by Benjamin (1960) and Landahl (1962). For instance, in a recent model 
for the solid side, Carpenter & Garrad (1985) consider the dynamics of the substrate 
fluid and also the viscoelastic effects of the outer diaphragm and supporting stubs. 
In fact, there still remains a variety of choice in selecting a compliant layer according 
to one’s own design, so that a variety of models may, in future. still be prescribed for 
the solid side. Consequently the study of the problem, as a combined fluid-solid 
problem, apparently still remains wide and open-ended. Moreover, the results 
obtained so far definitely do not point to a configuration that would guarantee 
stabilization, and consequent drag reduction, over a wide operational range. The 
problem therefore continues to remain very much unsolved, and perhaps a morc 
basic understanding of it is necessary before the end can be foreseen. 

It is in the context of the above background that the present method of analysis 
was conceived. It was felt that rather than specifying newer models for the compliant 
layer it would be more worthwhile to concentrate on the motion of the fluid-solid 
interface. Now, no matter what the nature of the compliant surface be, when a 
disturbance is present in the flowing fluid the interface will be correspondingly 
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disturbed from its stationary or mean position. Also, the normalized amplitude and 
phase of the displacement of the interface. relative to the disturbance in the flowing 
fluid. will depend on the actual nature of the backing compliant layer. To wit. 
different compliant layers will evoke different responses for the motion of the 
interface. Let us now reframe the problem in the following manner. Let the 
normalized displacement and phase of the interface by specified as additional 
parameters in an extended eigenvalue problem for the fluid side. This is tantamount 
to specifying boundary conditions on the moving boundary and considering the 
problem from the fluid side only. To begin with, the solid side, that is the backing 
compliant layer, is not in the picture a t  all. Nevertheless, if this extended eigenvalue 
problem is investigated for the entire possible range of values of the normalized 
displacement and phase of the interface, then the entire gamut of the problem will 
actually have been investigated. The last statement actually follows from the 
inversion of the earlier statement that different compliant layers will evoke different 
responses for the motion of the interface. Thus if all possible motion of the interface 
has been considered then it is tantamount to having considered all possibe backing 
compliant layers, in a combined fluid-solid problem. 

We shall choose to call the present approach the ‘kinematic model’, partly to 
distinguish it from the earlier combined fluid-solid problems and partly because, in 
this model, the boundary conditions at  the interface are kinematic. However, based 
on the results of the kinematic model. the material properties of the compliant 
layer, corresponding to any proposed design for the compliant layer, may be 
backcalculated. 

2. Formulation 
The problem may be formulated, as mentioned earlier, in two ways: as a combined 

fluid-solid problem as has been the approach in the earlier works ; or by proposing 
(kinematic) boundary conditions at  the interface and considering the problem from 
the fluid side only. as in the present kinematic model. It is necessary to clearly 
distinguish between these two approaches because initially the formulation is 
common to both, especially for the dynamics of the fluid side. We shall start with the 
common formulation, starting with the dynamics of the fluid side, and from the point 
where the formulations diverge two different approaches will be separately described. 

The problem is considered with x and y as the coordinate axes respectively in the 
direction of flow and normal to the undisturbed fluid-solid interface. All quantities 
are normalized using the free-stream velocity U, as the velocity scale and the 
boundary-layer thickness 6 as the lengthscale. Further 6 is defined as 6 = 5(vx/U,)i, 
and the mean-velocity distribution U(y) is given by the Blasius velocity distribution. 
For simplicity non-parallel effects are ignored. The disturbance stream function 
$(x, y, t ) ,  for an individual Fourier component, is given as 

$(x, y, t )  = A$(y) eia(z-ct), (1) 

where A is an arbitrary amplitude O(e), $(y) is the (complex) amplitude function 
assumed to depend on y only (since non-parallel effects are ignored) and $ is O ( l ) ,  OL 
is the real spatial wavenumber and c = c,+ici is the complex phase speed with c, as 
the real phase speed and aci as the amplification factor of the disturbances. &so, only 
two-dimensional disturbances are considered after invoking Squire’s theorem. 
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The equation for q5, for the linear theory, is given by the well-known 

i 
aR 

where the Reynolds number R = U, S l v ,  and primes denote differentiation with 
respect to y. The boundary conditions a t  the outer edge of the boundary layer may 
be reduced to the following form (see Schlichting 1968) : 

Orr-Sommerfeld equation : 

(u-c) (q5jr-a2q5) - u”q5 +- (4””- 2 a 2 y +  .44) = 0, (2) 

@ = $’+aq5 = 0, y 2 1, (3) 

which is the same as in the rigid-wall case. Carpenter & Garrad (1985) have given an 
improved version of the outer boundary conditions. However if (3) is applied at 
y 2 1.5 the level of accuracy in the numerical work remains adequate. 

The boundary conditions a t  the wall, for the rigid-wall case and for different 
versions of the pliable-wall problem, will obviously be different. For the rigid-wall 
case these are given as 

$4 = 0, q 5 ’ =  0, y = 0. (4) 

With the Orr-Somerfeld equation (Z) ,  and the boundary conditions (3) and (4), an 
eigenvaluc problem in a ,  c and R is obtained for the rigid-wall case. 

The boundary conditions for the pliable wall require some care in description, 
especially to distinguish between the two approaches mentioned earlier in 
formulating the problem. At the outset we assume that the wall is pliable only in the 
normal (y-) direction and that there is no motion of the wall in the tangential (x-) 
direction. The displacement ys of the interface, from its stationary or mean position, 
may be given in either of the two approaches as 

(5) ys = Aa eia(z-ct), 

where a is a non-normalized form of the amplitude of the wall displacement and is 
O(1).  It is important to remember that although a is 0(1), it  continues to remain 
arbitrary unless a normalization is specified for q5. Upon equating the normal 
velocities of the fluid and the solid at the wall one obtains 

q5 = ac, y = 0, (6) 

where the term ‘wall’ means the position y = 0, that is the undisturbed position 
of the interface. Also the tangential no-slip condition a t  the interface, after 
linearization, yields the following equation : 

u U ~ ,  y = 0, ( 7 )  $1  = - 

where subscript w refers to the wall, Linearization is justified since A is O(e). 

approaches. Each approach is described separately below. 
This is the point a t  which the description of the problem begins to differ for the two 

2.1. The combined &id-solid model 

In this approach, initiated by Benjamin (1960) and Landahl (1962), first (6) and (7) 
are combined to eliminate a.  This gives 

Cq5’+U:,q5 = 0, y = 0, (8) 

and (8) is used as one of the wall boundary conditions. The second boundary 
condition a t  the wall is obtained by equating a t  the wall the wall pressures, or a 
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pressure-derived response coefficient like admittance, calculated respectively from 
the fluid side and from the solid side. The wall pressure pw may be defined as 

(9) p ,  = A$w eia(z-ct), 

where $, is the amplitude of the wall pressure and is O(1). From the fluid side, two 
alternative expressions may be given for $3, based respectively on the x- and y- 
momentum equations, which are respectively 

It should be noted from (10) and ( 1 1 )  that the value of 6, depends on the 
normalization of 4. Landahl employed the concept of admittance defined as minus the 
ratio of the wall velocity to the wall pressure. From the fluid side the admittance Y 
is given as 

iaq5 Y=,, y = 0 ,  
m rw 

where either of the expressions (10) or ( 1  1) could be used for $, in (12).  It should be 
noted from (12) that since q5 and $w appear in ratio form, Y is independent of the 
normalization for q5. 

We next consider the solid side. The simple stretched-membrane model with 
inertia and damping, proposed by Benjamin (1960) and Landahl (1962), has the 
added merit that more complicated models may be reduced to  an equivalent model. 
In  certain respects this helps in obtaining a better physical understanding of the 
problem as will be seen later herein. The differential equation describing the motion 
of a stretched membrane is given as 

where m, T and d are respectively the mass per unit area, longitudinal tension per 
unit width and damping, in suitable non-dimensional form. Using (5) and (9) in (13) 
an alternative expression for $, is obtained from the solid side. If this is substituted 
in (12),  in conjunction with (6), an alternative expression for the admittance is 
obtained from the solid side. Calling the later Yo, the expression for Yo is given as 

ic Yo = - 

where co is the surface wave speed given as co = (T/m)i,  and d = d/m. Thereafter the 
second boundary condition a t  the wall, in the combined fluid-solid model, is given 
as 

which is analogous to the condition given by Hains (1965), i.e. 

Y-Yo=O,  y = 0 ,  (15a) 

(15b)  @"' + q5 = 0, 

where { is a parameter involving m, T and d .  
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Thus in the combined fluid-solid problem the basic Orr-Sommerfeld equation ( 2 ) ,  
along with boundary conditions (3) ,  (8) and (150,) (or (15b)) ,  constitutes a 
homogeneous eigenvalue problem. In this problem m, T and d are additional 
parameters, and the combined effect of these appears through Yo or 5. 

As regards the more recent models for the combined fluid-solid problem, cf. 
Carpenter & Garrad's model, the following observations are pertinent in relation to 
interpretation of certain results based on the kinematic model. Despite increased 
sophistication, these models can be reduced to an equivalent Benjamin-Landahl 
form. For example Carpenter & Garrad include in their model the flexural-rigidity 
term B, the spring-stiffness term K and the buoyancy effect of the substrate fluid. 
The buoyancy term modifies K to K ,  = K-g(p-p,),  where p is the density of the 
upper fluid and p, that of the substrate fluid. With these additions ci in (14) is 
modified to an equivalent c", in the following manner 

Further. Carpenter & Garrad consider the effect of the pressure p ,  of the substrate 
fluid. For small depths of the substrate fluid this acts like the conventional damping 
term, SO that d may be suitably modified in (14). When the small substrate depth 
assumption cannot be made the full expression for ps ,  as given by Carpenter & 
Garrad (1985), has to be retained in (14). The viscoelastic effects of the diaphragm 
material and supporting stubs are also considered by Carpenter & Garrad. In  relation 
to (14), all these added effects may be lumped into two parts : one modifying the real 
part of the denominator in (14), that is modifying c i  (similarly as in (16)); and the 
second part modifying the imaginary part of the denominator in (14), that is 
modifying d.  This would mean that c i  and d will no longer be constant but will 
depend on a ,  and the other material and physical properties of the composite 
compliant layer. 

We would like to rctain the simple Benjamin-Landahl expression as in (14), since 
this form proves to be useful in interpreting results based on the present kinematic 
model. This is especially so because the other more complex models can, generally 
speaking, be reduced to an equivalent Benjamin-Landahl form for each fixed a. 

2.2.  The LinPmatic model 
In this approach also the outer boundary condition is given by (3). At the wall the 
boundary conditions are given by (6) and (7 ) ,  so that the wall boundary conditions 
are explicitly inhomogeneous. Although solutions may he obtained for (2) with 
boundary conditions (3), (6) and (7),  the formulation of the problem is still not in a 
form that is convenient enough. To examine this point we look at  the formal solution 
of ( 2 )  in terms of the four fundamental solutions of the Orr-Sommerfeld equation, 
viz. $", v = 1 , 2 , 3 , 4  (see Schlichting 1968). Of these and $2 are the inviscid solutions 
and $3 and $4 arc the viscous solutions. $4 grows away from the wall and is discarded. 
Using $1, $2 and $3,  and boundary conditions (3), (6) and (7) ,  the following 
characteristic equations are obtained : 
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where oYd = #id +a#,d, subscript w refers to the undisturbed position of the wall, and 
subscript d refers to a chosen fixed point in the region y 2 1, where y = 1 is the 
boundary-layer thickness. Also, C,, C, and C, are constants to be determined from 
the simultaneous solution of (17a-c). 

We examine the solutions of (17a-c) for a fixed a and R. remembering that a is 
arbitrary. For any particular choice ofc with c * C, where Cis a rigid-wall eigenvalue. 
it is seen from (17a-c) that a family of solutions is obtained for $. This is defined as 
$(a ,  c) = a#( 1, c) where $(1, c )  is the solution corrsponding to a = 1 and the chosen 
value of c. Now, each different choice of c gives a different family of solutions, and 
therefore, to eliminate unnecessary multiplicity we consider only one member from 
each family of solutions, that is a suitable normalized member. Let the normalized 
member be called $. that is distinguished by an overbar from the rest of the members 
of the family, and let a chosen normalization be $d = 1. With this choice, the solution 
for 6 becomes unique. and for a fixed a and R, 6 depends only on the choice of c. 
Consequently Tw is unique and depends only on the choice of c. We may also write 
another important equation analogous to  (6) : 

- 
$hw = uc, (18) 

where, unlike in (6) where a is arbitrary, the normalized amplitude a, of the wall 
displacement, is fixed. At this stage the proposition of the problem may be inverted. 
For a fixed a and R we can introduce &, as an additional parameter, and the value 
of & is specified by choice. Thereafter one may endeavour to determine the 
Compatible value of c that will satisfy the following characteristic equations : 

where overbar in Ci is to distinguish from the Ci in (17a-c). Note that (19a) is a 
mandatory condition that follows from the definition of 6, i.e. gd = 1 a t  y = d ,  with 
a‘> 1. The compatible value of c in ( 1 9 a d )  may be determined by solving the 
determinant given below, which follows from the solvability condition of ( 1 9 a d )  : 

We shall now endeavour to show that the problem formulated above has the 
features of an eigenvalue problem in a, R, c and $w and thus may be called a 
modified or extended eigenvalue problem, although the boundary conditions arc 
inhomogeneous. However, for brevity, we shall refer to the compatible value of c in 
(20) as the ‘eigenvalue’ for c. For chosen a ,  R and 6w let a typical eigenvalue for 
c in (20) be given as c = c* .  We notice first that a is determined from (18) as 

= (sw/c*. Further, upon substituting c = c* in (17a,  6 ,  c) the family of solutions 
corresponding to c = c* may be obtained. We notice that Ci = AQi, subject to c = c*, 
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where h = a /a .  Since a is a free constant there is no restriction on the value of A, and 
the family of solutions for q5 is given as q5 = A$. It may be noted that the trivial 
solution for q5 also exists, which is obtained by letting h = 0. Thus each family of 
solutions for q5 has all the attributes that go with an eigensolution, although to arrive 
at a particular family of solutions for q5, and to pose the problem on lines parallel to 
a conventional eigenvalue problem, we have to introduce 6 and consider 6, as 
an additional specifiable parameter. Thus for a fixed a and R, q5 is characterized as 

There are also a few other points worthy of note. First, in place of $,, the 
normalized amplitude of the wall displacement a could also have been used as a 
parameter in the eigenvalue problem, in which case 4, would have been determined 
a posteriori from (18), and, in (20) 6, would have had to be replaced by ac. Secondly, 
$w or a represents a rational departure from rigidity in the sense that as 6, + O  (or 
a+0), c* + C, where cis the rigid-wall eigenvalue. Thus 6, and aare  both O(6c) where 
6c = c*--c. Incidentally (20) also reduces to  the characteristic determinant for the 
rigid-wall case when 6w + 0. Thirdly, in the general scheme of things, the rigid-wall 
eigenvalue problem may be considered as a special case of the present problem with 
6, = 0, and the rigid-wall eigensolution for q5 has the same attributes for q5 as 
mentioned earlier, viz. q5 = and that the trivial solution exists. However, 
although h is arbitrary here as well, h cannot be put as h = a / a  since a = 0 for the 
rigid-wall case. 

The discussions above give a formal basis for the kinematic model. Operationally 
speaking this model is an extended eigenvalue problem in a ,  R, c and 6, (or a). After 
choosing a ,  R and 6w, one has to determine the eigenvalue c ,  and the normalized 
eigensolution 6. Further, upon using 6 in (10) or (11) the wall pressure amplitude 
33, is obtained, but now the value of 33, is definite since 6 is already normalized. 
Moreover the admittance Y ,  from the fluid side, may be obtained from (12) and as 
mentioned earlier the value of Y is independent of the normalization for q5. 

The main advantage of the kinematic model is that the stability of the flow can be 
studied from the fluid side only after properly choosing an additional parameter 6, 
or a to typify the motion of the interface. Secondly the results based on the 
kinematic model, like 5, or Y ,  can be used to back calculate the material properties 
of the backing compliant layer. Thirdly, as mentioned earlier, if an exhaustive range 
of values of the parameter 6, or a is chosen, then the entire gamut of the problem will 
actually have been investigated, yet without reference to the material properties of 
the wall. 

q5 = q5(6,> c * ) .  

3. Numerical methods 
The mean velocity of the flow was obtained from Blasius’s solution using a 

Runge-Kutta scheme of integration. For the solution of the Orr-Sommerfeld 
equa,tion a finite-difference procedure was used. This was the same as Thomas’s 
(1953) method for the rigid-wall case. For the pliable-wall case extensions of 
Thomas’s method were developed. The rigid-wall problem is homogeneous and the 
determinant of the coefficient matrix has to be zero in a finite-difference solution 
scheme. In  fact this condition enables one to determine the eigenvalue in the rigid- 
wall case. The matrix representation of the finite-difference solution is 



Stability of the boundary layer at a compliant surface 209 

where LA,,] is a pentadiagonal band matrix, [gi] is a column vector of Thomas’s 
auxilliary function (actually a Noumerov- type transform of the discretized $- 
function), and [P,]  is the right-hand-side column vector. Also i = 1 corresponds to 
y = 0 and i = N + 1 corresponds to y = d ,  where N is the number of steps in the finite- 
difference procedure. As mentioned earlier all the P, = 0 for the rigid-wall case. 
However, for the pliable-wall case, in view of (6) and (7),  PI and P, are non-zero and 
both contain a (wide (6) and (7)) as a multiplying factor. But, the coefficient matrix 
[Ai,] remains the same as in the rigid-wall case. Now for a given a and R, any choice 
of c with c =t= C, where c is a rigid-wall eigenvalue, ensures that det [A,,] is ’ non-zero, 
in which case there is no difficulty in solving (21), and the solution for [g,], and 
consequently [$,I, contains a as an arbitrary multiplying factor. The solution for $ 
can be made unique by specifying a normalization, like q5 = 1 at  y = d with d as a 
chosen fixed point in y B 1. This step actually gives us the normalized solution $ 
from which a value for $, is obtained. 

In  the kinematic model the value of $, is specified by choice along with a and R. 
Thus to obtain the eigenvalue for c in the kinematic model, c is successively adjusted, 
and the solution for (21) repeated, until the difference between the specified value of 
Tw and the value of $, obtained from the latest solution of 6, becomes insignificant. 

In  the combined fluid-solid models, for a chosen a and R and a trial value of c ,  first 
the admittance Yo (see (14)) from the solid side is evaluated. Secondly the solution 
for (21) is obtained, from which the admittance Y from the fluid side is evaluated. 
To get the eigenvalue of c, the value of c is continually adjusted, and the evaluation 
of Y,, and Y repeated, until the difference between Y,, and Y becomes significant. 

Both the procedures described above are remarkably simple, and in both the result 
for the eigenvalue c converges rapidly upon using a two-dimensional Newton- 
Raphson technique. The accuracy is as good as in Thomas’s method for the rigid- 
wall case, i.e. errors are O(h4) where h is the step size. The calculations were 
performed on an ICL-2960 computer using double-precision arithmetic. 

4. Some predictions based on the formal solution and related results 
4.1. Comparison with Benjamin’s formal solution 

The formal solution for the kinematic model is embodied in (20). Before making any 
predictions based on this it is worth comparing the solution with Benjamin’s (1960) 
formal solution for the pliable wall. Broadly speaking there is a conceptual similarity 
between (20) and Benjamin’s eigenvalue problem for the pliable wall (Benjamin 
1960, eqs. (3.1)-(3.4)), to the extent that Benjamin also does not introduce wall 
material properties beforehand. Rather he introduces a surface compliance A (a 
in Benjamin’s notation; also see eqn. (3.2) in Benjamin 1960) as a parameter 
defined as 

and we see from (12) that A is closely related to the admittance Y .  Also, like Y ,  A 
is independent of the normalization for $. Thus, without loss of generality, we may 
assume that A = 17; $,/$,, with I;, evaluated based on 6. Thereafter it is seen from 
(20) that there is a unique mathematical correspondence between A and $w. 

Moreover, it will be shown later that  for low $w-modes (to be defined subsequently), 
and particularly for the TollmienSchlichting type modes, $, is approximately a real 
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constant for a fixed a and R. In  such a situation A is almost a (real) constant times 

We thus see that in Benjamin’s eigenvalue problem also, A is effectively like a 
‘kinematic parameter’ similar to $w, in the sense that wall material properties need 
not be initially introduced in A .  The point of departure from Benjamin‘s analysis of 
the present one is in the manner in which the respective eigenvalue problems are 
tackled and in the type of end results in view. M7e discuss Benjamin’s analysis 
first. 

The classical Tollmien-Schlichting eigenvalue problcm for the rigid wall reduces to 
the following characteristic equation : 

6 w .  

F(x)  = E(a,  c), (23) 

where F ( z )  is called the Tietjen’s function defined in terms of the viscous solution 
#3 with z = (aRUh)fy,, and, E(a,c)  is the inviscid part dependent on the inviscid 
solutions #1 and #*. Subscript c refers to the critical point. For simplicity Benjamin 
chose the variable x as z = ( a R U ~ ) ~ c / U ~ ,  after using the approximations L1k FZ C.: 
and yr FZ c / U ; .  Thereafter he obtained the pliable-wall characteristic equation as 

E + A ( l  - E )  
1 + A ( l  - E )  F ( z )  = = E,(a, c). 

Thus a very elegant connection was established between the rigid-wall and pliable- 
wall characteristic equations, respectively (23 )  and (24); and Benjamin was able to 
show that the rigid-wall neutral curve will shift in the (a ,  R)-plane accordingly as the 
pair (a ,  c )  transforms to the pair (a1, c l )  so as to make E ( a ,  c )  = El(a, ,  c l ) .  However, 
the qualitative predictions regarding shift of the neutral curve that Benjamin 
actually made, were done only after introducing the wall material properties. In 
essence therefore it was probably not Benjamin’s intention to utilize the parameter 
A independent of the wall material properties. Moreover, despite its elegance (24) has 
certain limitations. First, the expression z = (aRUk)i c / U k  is too approximate for 
accurate quantitative work. Secondly, as mentioned by Benjamin himself, (23) and 
(24) refer only to Tollmien-Schlichting type modes, and (24) does not cover the 
various other modes that appear in the pliable-wall problem. Thirdly, the 
characteristic equation ( 2 3 ) ,  and therefore (24) also, are ueful only for near-neutral 
disturbances. We may thus state in conclusion that although conceptually speaking 
the parameter A of Benjamin is as general as the parameter dw used in the present 
kinematic model, his formal solution (24) can give results that  are subject to the 
above restrictions and limitations. We next look at  the kinematic model. 

4.2. The behaviour of Tollmien-Schlichting-type modes as prpdictpd 
by the kinematic model 

Certain prcdictions may also be made based on the formal solution (20) for the 
kinematic model. Unlike Benjamin’s work where the aim was mainly to study the 
shift in the rigid-wall neutral curve, in the present kinematic model the aim is to see 
what is happening a t  a particular point in the (a ,  R)-plane with change in the 
pliability of the wall. 

The determinant in (20) may be expanded to the following form: 
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where A is the determinant corresponding to the rigid-wall case, given as 

A = 
@ld @2d 

4 l W  A w  $3w , 
&w &w K W  

Let the rigid-wall eigenvalue for a given a and R be C, in which case the pliable-wall 
eigenvalue c ,  for limiting departures from rigidity, will be given as c = c + ~ c .  Such 
modes will be referred to as the Tollmien-Schlichting type (TS) modes. We remember 
that I& is O(6c) and that as I $ ~ + O , C + C ,  and it follows from (25) and (26) that 
A - t O .  Thus for limiting departures from rigidity (25) reduces to 

Upon retaining highest order O(6c) terms in (28) the following equation is obtained : 

6c = -$wh, (29) 

where h is a complex constant evaluated a t  c = C, given as 

Putting $w and h respectively as $w = lgw1 eiB and h = Ihl eioc, we may separate the 
real and imaginary parts of 6c to  get 

Thus, remembering that c, = cr+6c, and ci = ci+6ci, we note that c, and ci vary as 
sinusoids with the phase angle 6' of $w, and with the rigid-wall values cr and ci 
respectively as mean values. Moreover the normalized quantities 6cr/\&J and 6ci/ 

should vary only with 0, and the respective expressions are given as 

= - / A /  cos (6+ eo), 6c, 
l 6 w l  
6 C i  

l 6 w l  
__ = -1hl sin(6+@,), 

(33) 

(34) 

Typical results are shown in figures 1 and 2 respectively for c,,ci versus 0 and 
~ C , / I ~ ~ I ,  6ci/l$wl versus 0. These results are based on the direct numerical solution of 
(2), using (3) as the outer boundary condition, (6) and (7)  as wall boundary 
conditions, with chosen specified values of a, R and $w. The condition $d = 1 is 
applied a t  d = 2. Also & = IFw/ eis was specified as a complex parameter by using 
chosen values of l$wl and 0 for each run of (2).  And, Fw was taken as Fw = - U& $w/c 
(see (7)). The point chosen is at a = 0.733, R = 2562.8 (figures are not round since 
originally the normalization for y was done using the displacement thickness 6") 
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FIGURE 1. Curves for c, (-), c, (---) versus 8, for different /&,I, depicting TS mode class. All 
results in figures 1-21 are for R = 2562.8, a = 0.733. 

corresponding approximately to the point of maximum amplification within the 
rigid-wall neutral curve, a t  the given R. Figures 1 and 2 provide direct numerical 
proof to bear out amply the contentions regarding (31)-(34). Also, it is observed that 
when = 1.5 the sinusoidal character of the curves becomes distorted. As will be 
seen later, this distortion actually leads to  bifurcation of modes at still higher values 
of ITw], which amounts to a breakdown of the simple linearization postulated in (28). 
It is also seen from figures 1 and 2 that the value of 0,, i.e. the phase angle of A ,  is 
0, x 0", although small changes in 0, do take place as lTw1 increases. 

The significance of the above results is that two zero-crossings are observed to 
occur for cl, one for 0 x 0" and the other for 6 z 180". Also there is a substantial 
region in 0" < 6 < 180" in which ci is negative, and were it to be possible to remain 
in this region stabilization of the TS-type modes would actually be assured. Prima 
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FIGURE 2. Normalized curves for c, and c,, viz. &cr/@J, &c,/l$J versus 8, with c, = c;+&c, and 
c, = + 6c,, where c ~ ,  c1 correspond to  the rigid-wall eigenvalue. Results are for different values of 

for the TS mode class. 

facie this result is very significant, but this leads us to the question of physical 
realizability of modes, some aspects of which are discussed next. 

The question of physical realizability of a proposed kinematic situation is in part 
connected with the admittance Y ( =  Y,+i&) defined in (12). For instance at a zero- 
crossing of ci, if the sign of Y, is negative then such a situation is not physically 
realizable as this would be tantamount to the existence of perpetual motion at least 
for passive surfaces. Whereas if at ci = 0, Y, = 0, then such a situation could be 
(though not always) physically realizable. This stipulation regarding physical 
realizability, in terms of the sign of Y,, can be made strictly speaking only for 
ci = 0, because it is only for ci = 0 that  a physical significance and meaning can 
be attached to the admittance Y .  For regions where ci is not zero, the sign of Y, is 
usually not a good guide for physical realizability, except for the TS-type modes. 
However a method has been developed by which physical realizability can be 
ascertained in terms of equivalent material properties of the compliant surface, and 
this will be discussed in due course. 
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FIGURE 3. Curves for & versus y for a rigid wall and for the TS mode class Figures in 
parentheses indicate I$,J and 8 (degrees) according t o  the format (&J, 8).  

The above discussion on the importance of Y justifies examining its behaviour 
with changes in l$wl and 8, as done for c .  It is seen from (lo)-( 12) that Y depends on 
the distribution of 6. Benjamin (1959) has shown that for long waves the amplitude 
of the (fluctuating) pressure should remain approximately a real constant. We also 
note that if the effect of change in gW and 8 on the distribution of $is confined to 
within the boundary layer, then fiw will be more or less independent of variations in 
@,I and 8. We have found that this is in fact the case for TS-type modes. Figures 3 and 
4 respectively show the plots for the real and imaginary parts of 5, i.e. & and $i, for 
different values of and 8,  including for the rigid-wall case for which $w = 0. The 
plots show that the change in the shape of $, with the deviation of &, from zero, is 
mainly confined to within the boundary layer. Moreover, with the normalization 
qd = 1, the integral J,"$dy is predominantly real. From (ll), this leads to two 
conclusions: first that fiw is approximately independent of changes in $w, and 
secondly that $w is approximately a real constant for TS-type modes, at a given a 
and R. This confirms Benjamin's contention. 

The behaviour of Y ,  consequent on the behaviour of fi, described above, is as 
follows. It is seen from (12) that Y should vary with and 6' in the following 
manner : a -  a Y, = - F / # w l  sine, 5 = -- sin 8, (35% b )  

P w  M W I  I;, 
a -  q a  

yi = 7 cos B ,  ~ - - - coso, 
P w  m A (3Ba, b )  
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FIGURE 4. Curves for 5, versus y for a rigid wall and for the TS mode class. Figures in 
parentheses indicate {$,J and 0 (degrees) according to the format (@J, 0). 

In  the above equations, since $w is approximately a real constant, the Yr, Yi versus 
6' curves are respectively negative sine and cosine curves. This is illustrated in 
figure 5 which shows the Y,/Ir$,l, YJl& versus 6' curves, for different values of l&l. 
Again the results are based on direct numerical solution, and the curves amply bear 
out the contentions made regarding the behaviour of Y and $,. In  particular, the 
approximate merging of the Y,/I$,l, YJ&J versus 8 curves is very conclusive. 
Moreover, in figure 6 sample plots are shown for $, versus 8, a versus 8, Opa versus 8, 
for l&,l = 0.5 with c1 = 0.733 and R = 2562.8, where B,, = [arg &.) -arg (a)]  is the 
phase difference between the wall pressure and the wall displacement. In this figure 
$, is shown to be approximately a real constant. 

Upon reviewing figures 1, 2, 5 and 6 it transpires that  6ci and Y, have almost, the 
same phase, which is to say that generally speaking in the region 0" < 6' < 180": 
where ci is negative, Y, is also negative. Prima facie this is not a very encouraging 
situation so far as physical realizability of the ci < 0 region is concerned, but as 
mentioned above, final conclusions regarding physical realizability should not be 
drawn based on the sign of Y, alone, when ci + 0. 

Let us now concentrate our attention on the two regions 8 z 0" and 6' z 180" 
corresponding to the zero-crossings of the ci versus 6' curves. Amplified plots for the 
region 6' z 180" are shown in figure 7. It is seen from this figure that the subtle change 
in phase difference between ci and Y,, caused as increases, renders the point 
ci = 0 physically realizable or otherwise. When lr$wl = 0.5 then both at 8 z 0" and a t  
8 z 180°, Y, < 0 when ci = 0. Therefore neither of these situations of neutral stability 
is physically realizable. Whereas when &.I = 1.5, then both at 8 z 0" and 6' z 180", 
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FIGCEE 5.  Normalized curves for Y, and Y,, viz. Yr/@,J, Y1/@J versus 0, for different values of 
lrJwl for the TS mode class. 

Y,. > 0 when ci = 0. These latter two situations of neutral stability therefore pass a 
crucial test for physical realizability. Yet the point ci = 0, l&J = 1.5, near O = O", is 
not physically realizable for another reason, because Yi > 0 a t  this point, which is 
tantamount to an imaginary value for the surface wave speed co (see (14)). Thus it 
is seen that the region of attention is O z 180" where if @J is sufficiently large then 
the state ci = 0 may be physically realized. Incidentally the region 8 z 180" also 
corresponds to Benjamin (1960) and Landahl's (1962) neutral curves for TS-type 
modes in the pliable-wall case. Benjamin for instance considers Ai = 0 with A ,  < 0, 
corresponding to Y, = 0 and Y, < 0, for his neutral curve. Moreover, with reference 
to figure 7 (ci = 0,O M 180°), it is seen that if one were to move from the point ci = 0 
in thc direction of increasing Y,, then ci > 0 and increasing. This implies that if 
damping is increased in a neutral TS-type mode then this leads to destabilization, 
confirming this earlier important finding of Benjamin and Landahl. Figure 7 also 
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FIGIJRE 6. Curves for wall pressure (iWr, liW,), wall displacement (gr, q),  pressure-to-displacement 
phase difference 8,, [ = arg ($,) - arg ( 4 1 ,  c, and c, versus 8, with = 0.5. Results are for the TS 
mode class. 

reveals the basic difficulty of stabilizing TS-type modes. The problem is that the vast 
region corresponding to ci < 0 in 0" < 6' < 180" cannot be approached once the 
barrier Yr = 0 is reached from the side T', > 0. Moreover, a possible realizable 'stable 
pocket ' is confined only to the very small region in 6' (see curve for = 1.5 near 
6' z 180" in figure 7) bounded by ci < 0, Y, = 0 and ci = 0, Y, > 0. From a practical 
standpoint i t  is a rather critical design problem to remain within such a 'stable- 
pocket' as this would require a rather exacting choice of material properties of the 
wall. Moreover, a choice of a set of material properties giving stability a t  a particular 
a and R does not guarantee that the TS-type modes will remain confined within 
'stable-pockets' a t  other points in the (a,&)-plane. This is also the reason why a 
variety of pliable-wall neutral curves are obtained for the TS-type modes when either 
the model for the wall, or the material properties of the wall, are changed. Such 
neutral curves may be sccn in the various different works starting from Landahl 
(1962) and up to Carpenter & Garrad (1985). 

After investigating the TS-type modes a t  other representative points in the (a ,  R)- 
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FIGCRE 7 .  Curves for c, (---) and Y, (-) versus 8, with an enlarged scale for r9 around r9 = 180", 
for [$,,,I = 0.5, 1.5 and for the TS mode class. The figure shows the existence of a 'stable pocket' for 

= 1.5. 

plane, it was found that the behaviour of these modes is essentially similar to that 
a t  the point at a = 0.733, R = 2562.8, namely that 'stable pockets', when these do 
exist, are confined to a very narrow band of 8 in the region 8 % 180". In  our opinion 
therefore, one ought not to try and 'stabilize' TS-type modes, because i t  would 
require a very exacting choice of wall material properties. Secondly, such properties 
would need to change with position in the (a,R)-plane to  meet the exacting 
requirement of remaining within 'stable pockets '. As a design problem this seems to 
be virtually intractable. The best way to handle the situation, in our opinion, is to 
create conditions such that the TS modes just do not exist. How this may be achieved 
we shall discuss below. 

5. The bifurcation of modes 
We next have a look a t  the manner in which the TS-type modes bifurcate into 

other modes. It is also worth examining the distinct classes of modes that exist in the 
problem. We begin the study of bifurcation of modes by looking a t  figures 8 and 9 
which give more exhaustive plots of cr, 5 versus 8,  a t  a = 0.733, R = 2562.8. It is seen 
that as @wl is increased to about = 2.0, the familiar TS-type mode class 
undergoes a bifurcation. To avoid confusion we shall use 'mode' for a particular 
mode corresponding to one set of values of a, R, and 8, and 'mode class ' or 'class 
of modes' will be used to denote a group of modes that have certain identifiable 
common features. Thus with reference to figures 8 and 9 all TS-type modes for which 
the cr, ci versus 6 curves form a closed loop in one cycle of 0-360" in 8,  will be deemed 
as belonging to the TS-mode class. The cr, ci versus 8 curves for 16wl = 2.0 close over 
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FIGURE 9. Curves for ci versus 0 for different /$,,,I, depicting different mode classes and bifurcation 
of mode classes. Figures shown on curves indicate value of / $ w l ,  and figures in parentheses indicate 
order of multiplicity of the 0-360" cycle. 
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from a TB inode class to a KH mode class for @,.,I = 2.0. -, c, > 0 ;  ---, c, < 0;  0 ,  rigid wall with 
c, = 0.3564. 

two cycles in 0"-360" ; so this mode class is transitional and belongs in one part to the 
TS-mode class and in the other part to some other mode class which we shall see later 
to be as the Kelvin-Helmholtz mode class. This bifurcation of mode classes is further 
illustrated in an isometric plot of c, versus 8 in figure 10. 

It will be pertinent a t  this stage to examine how the concept of bifurcation is 
compatible with the theory outlined earlier in 5 2 . 2  It was mentioned earlier that  
a family of solutions for $ is characterized by $ = $(&,,c). Now at a given value 
of and 8 it is sometimes possible to find two or more values of the pliable- 
wall eigenvalue c*, from (20). Thus if cT and c,* be two such eigenvalucs then 
$ = $(&, cT) and q5 = $(&, c,*)  represent two distinct families of $. Basically this is 
similar to the well-known situation for the rigid-wall case (for which r$w = 0) where 
there is one principal eigenvalue for c ( =  c), and also higher-order eigenvalues. 
Further, for the pliable-wall case, when two distinct eigenvalues cT and c,* are 
obtained for a given @J and 8, the corresponding $-functions are completely 
different in shape although & is the same for both. Also the normalized wall 
displacements arc different in the two cases, given respectively by z1 = &w/cT and 

= c$,,,/c;. Figure 11 shows the shapes of I$ for I&,[ = 2.0 and 8 = 180" for the two 
distinct eigenvalues for c given respectively by c = 0.4838 - i0.05568 (TS-type) and 
c = 0.052037 - i0.02936 (KH-type). 

The ncxt two plots that  attract attention in figures 8 and 9 are the cr, c, versus 8 
curves corresponding to I&,/ = 3.0. It is seen that the respective curves for c, and 
c, close over four cycles of 0" 360", which means that there are further bifurcations 
of mode classes, and the mode class corresponding to 16wl = 3.0 is also transitional. 
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FIGURE 11. Curves for 6 versus y for TS and KH modes for @,.,I = 2.0 and 0 = 180'. See 
bifurcation of mode classes for @,J = 2.0, in figure 10. 

It will be interesting therefore to identify and examine the regular mode classes, 
meaning thereby those mode classes that close within one cycle of 0"-360". Three 
such mode classes are identified in figures 8 and 9, and others will be identified later. 
Apart from the TS mode class discussed in detail earlier, the two other mode classes 
shown in figures 8 and 9 are respectively called the Kelvin-Helmholtz (KH) mode 
class and the 'low-speed stable' mode class. The latter corresponds to low values of 
c, and high values of from about @wl = 4.5 and above. This mode class is very 
stable although it belongs to high values of I&[, and as such it is not of much interest 
here. 

The KH mode class, which will be discussed in detail later, is interesting and 
important. It appears that the TS and the KH mode classes are the only two mode 
classes that exist for low-values of l$wl and even in the limit + O .  Yet these two 
mode classes are completely and totally distinct despite a common intersection of 
values of @wl and 8. 

Another very important mode class is the resonant (R) mode class. The terms 
Kelvin-Helmholtz mode class and resonant mode class follow from Benjamin's 
(1960) nomenclature ; the reasons for attributing these names to the different mode 
classes in the present work will be discussed below. Bifurcation to the R mode class 

x - 2  
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FIGURE 12. Curves for c, versus 0 for different @,J, depicting the R mode class and bifurcation to 
transit'ional mode classes as the value of I$J is lowered. The latter phenomenon independently 
confirms the existence of 'modal coalescence' as reported by Carpenter & Garrad (1985, 1986). 
Figures shown on curves indicate value of @J, and figures in parentheses indicate order of 
multiplicity of the 0-360" cycle. Solid and broken lines respectively indicate stable and unstable 
regions. 

is shown in figures 12 and 13, respectively for the cr,c, versus 8 curves. The figures 
are more or less self-explanatory. However, there is one important point to note. The 
graphs corresponding respectively to l&.l = 3.5 and @wl = 5.0, both belonging to 
different transitional mode classes, reveal an interesting feature. It appears that c, 
develops a singularity going from - 00 to + 00 across these two transitional mode 
classes at a point near 6 = 360". However, ci + + GO for both limbs of the singularity 
for c,. This singularity has great significance in the matter of designing stabilizing 
coatings, and we believe that the concept of 'modal-coalescence ' introduced by 
Carpenter & Garrad (1985) is related to the behaviour of modes near this singularity. 
Besides, the singularity itself may be related to static divergence. 

It appears from figures 12 and 13 that the regular R mode class exists only for high 
values of l$wl. Secondly, these modes are high-speed modes, that is c, for these modes 
is mainly in the range c, 0.7. Further, it appears that the TS-to-R bifurcation, 
although occurring through transitional mode classes like = 3.5 and &J = 5.0, 
is discontinuous in the sense that the bifurcation occurs via a singularity. Also the 
two transitional mode classes, viz. for = 5.0, are very important 
in regard to flow stabilization because both these mode classes have a large unstable 
region as shown in figures 12 and 13. 

The manner in which the R mode class begins to distort and subsequently 
bifurcate into a transitional mode class, as the value of l$wl is lowered, is illustrated 
in the plots of c, versus 8 in figure 12. 

It is pertinent to mention that there is also a high-speed stable mode class having 
high values of I # J  and c, similar to the R mode class. Since this mode class is entirely 
stable i t  is not of much interest here and is thus not shown in the figures. 

= 3.5 and 
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FIGURE 13. Curves for c, versus 0 for different @,J, depicting the R mode class and bifurcation to 
transitional mode classes as the value of Ikl is lowered. Figures shown on curves indicate value of 
@J. and figures in parentheses indicate order of multiplicity of the 0-360" cycle. 

In summary, therefore, we may say that there are three regular mode classes that 
are of interest here, namely the TS, KH and R mode classes, and the nomenclature 
follows Benjamin's (1960) terminology. The Landahl (1962)-Benjamin (1963) 
classification based on energy methods will be discussed later. However, Benjamin's 
' modes ' represent only a very small subset of the totality of possibilities depicted by 
the 'mode classes'. Further there are also transitional mode classes mainly in the 
region I &  = 2.0 to = 6.0 which depict the regions of bifurcations of the regular 
mode classes. These transitional mode classes also depict, large regions in % where 
these are unstable, and, over part cycles of 0"-360" in 0, these mode classes depict 
behaviour corresponding to regular mode classes. For instance, the relatively low 
c, ( %  0.5) resonant mode, conceived by Benjamin and Landahl, does not belong to 
the regular resonant mode class, but to  a transitional mode class. 

All results discussed so far pertain t9 one point in the (a,R)-plane, that a t  
a = 0.733 and R = 2562.8. A few other representative points were also investigated 
in detail, although plots for these are not given herein, including one a t  a low 
(subcritical) value of R = 200 with a = 0.4, a t  a low value of a = 0.03 with R = 2500, 
one above the neutral curve at  ci = 1.25 and R = 2500, and one below the neutral 
curve at  a = 0.4 and R = 2500. All these points show a qualitative similarity to the 
point a t  ci = 0.733 and R = 2562.8, in respect of behaviour of regular mode classes 
and in respect of bifurcation of modes. However, as is to be expected, the ranges of 
values of over which the regular mode classes exist, and the threshold values of 
@J for bifurcation from regular mode classes to transitional mode classes to occur, 
are different a t  different points in the (a ,  R)-plane. An exhaustive study of all points 
in the (a ,  R)-plane would be prohibitively elaborate although not impossible. In  the 
rigid-wall problem it is only necessary to investigate one mode a t  each point in the 
(a ,  R)-plane, whereas in the pliable-wall problem entire classes of modes have to be 
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investigated a t  each point. Actually such an exhaustive study is unnecessary, 
especially because the basic qualitative behaviour is similar everywhere. Rather, if 
the aim is to design a suitable stabilizing coating then one has to look for two things 
from the results of the kinematic model: the most viable stable region that is also 
physically realizable ; and, in such a viable stable region, the particular mechanism 
that could potentially become most dangerous in causing destabilization. These 
questions will be discussed in 3 8, but before that we look at  the behaviour of the K H  
mode class and the R mode class in some detail. 

6. The Kelvin-Helmholtz mode class 
It was mentioned earlier that  the KH mode class exists for low values of @,I, and 

the limit (&I+O does not correspond to the rigid-wall limit in this case. To 
understand this we look at (7)  and (18). We note from (18) that the limit +0  is 
reached for a non-zero value of w if Ic( + 0, in which case it is seen from (7)  that when 
l$wl --f 0, &, + 0 and gW is given as gW = -a, U&, where is the limiting value of a. 
It is seen therefore, that  the K H  mode class is quite distinct from the TS mode 
class. 

The nomenclature ‘ Kelvin-Helmholtz ’ mode class now begins to be understood. 
I n  the limit \&,I + 0 with JcJ + 0 this mode represents a stationary periodic ripple with 
spatial wavenumber a and amplitude a,,, and since Ic( + 0 this mode is neutrally stable 
in the limit. This is in fact what the neutrally stable classical Kelvin-Helmholtz 
mode is. Further evidence is provided from a figure? similar to  figure 6 where $,, c, 

= 0.1 for the KH-mode class. This figure shows 
that Opa, which is the phase difference between I;, and W, is nearly constant a t  180’ 
over the entire range of 0. As expected, I;, and dare  in antiphase for K H  type modes. 
It must however be emphasized that the present classification does not readily adapt 
to Landahl (1962) and Benjamin’s (1963) classification based on energy analysis. By 
energy analysis, what have been called Kelvin-Helmholtz modes by Benjamin and 
Landahl probably belong to a small segment (i.e. a small range of values in 8) within 
one of the transitional mode classes herein. And, what has been called the K H  mode 
class herein, possibly contains small segments in 0, the modes corresponding to which 
may be identified with what has been called static divergence, or, low-speed 
travelling wave flutter by Carpenter & Garrad (1986). It must be realized that 
classification of ‘modes’ as done by earlier workers, and classification of ‘mode 
classes ’ as in the present work, could represent two different endeavours, since the 
former is a very small subset of the latter. Moreover to seek a connection between the 
two by energy analysis is not straightforward because there is no model a priori  for 
the solid phase in the present analysis. We therefore depend on Benjamin’s (1960) 
scheme of classification and nomenclature, and on other basic considerations, for 
assigning the name ‘ Kelvin-Helmholtz ’ mode class for this particular mode class 
described herein. 

We next see whether or not certain predictions can be made for the KH-mode 
class, based on the formal solution (20), similarly as done €or the TS-mode class. We 
use (20) with the caution that the fundamental solutions q52 and q53 are not 
necessarily of the same form as in the classical Tollmien-Schlichting problem, 
especially when the critical layer becomes submerged in the wall viscous layer. 
However, and @2 still imply the inviscid solutions and q53 the relevant viscous 

t This, and other figures similarly discussed but not printed, are available from the authors or 
the Editor. 

and 8,, are plotted versus 8 for 
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solution. Using aU& in place of U &  Tw/c in (20), expanding and proceeding to the limit 
l $ w l +  0 we obtain the limiting value of a. as 

where subscript zero refers to the limiting state, and A and A, are given by (26) and 
(27) respectively. We also note that a,a0 may be formally expressed as 

a= a,+- 6c+ ..., Elo 
- % I O +  ac l o  - % hC+. . . ,  (396) 

where c = c0+6c. Also 6c is meant to imply the departure from the limiting value 
co, and we know that co = 0. We now expand (20) again, using (37) and remembering 
that $w - O(6c). This gives 

Bo 6c + Av[$G, All ,  = 0, (40) 

where 

and the expressions in parenthesis subscripted by zero are evaluated a t  the limit 

As in the TS case, 6c may now be expressed in terms of a complex constant 
Icl 4.0. 

A, = ]All ei61, from (40) and (41), as follows: 

6c = - lAll ei('+'l), (42) 

with (43) 

Thus the behaviour of 6c, and 6ci is again sinusoidal, and expressions for 6cr, 6ci, 
~ C , / I $ ~ I  and 6ci/l& are respectively the same as (31), (32), (33) and (34) with A 
replaced by A, and 8, replaced by 8,. Two figures, similar to figure 2 ,  were made 
showing normalized plots for er/l&, ci/&.l (remembering 6c = c, since co = 0) versus 
8, a t  a = 0.733, R = 2562.8, for different values of @wl.  The first figure was for 
comparatively low values of (< 0.1) and the scaling was near perfect. The second 
figure was for larger values of l& l (> 0.1) and the distortion of the sinusoidal 
character (leading to bifurcation of modes at  higher values of l $ w l )  was apparent in 
this figure. Also from the first figure the value for O,, that is the phase of A,, was found 
to be 8, % -30". 

Regarding the admittance Y ,  i t  should be mentioned in advance that the sign of 
Y, is not a good guide to physical realizability of KH modes when ci =t= 0, except when 
ci = 0 exactly. Nevertheless, the scaling for Y is again given by (35a, b )  and (36a, b ) ,  
that is the same as for the TS-mode class, and for the same reasons as for the TS- 
mode class. In support, figures similar to figures 3 and 4 were plotted for the real and 
imaginary parts of the various $-functions for the KH mode class with different 
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values of I$,[ and 8. I n  these figures also it could be seen that the effect of @,I on the 
distribution of $ was confined to within the boundary layer. The shape of the 6- 
functions for the K H  modcs may be seen in figure 11 and the shape is quite distinct 
from that for the TS modes. Moreover, it has been contended earlier that #, 
is approximately a real constant. Thus plots similar to figure 5 were made for 
Y,/I$,l, Yi/1$,[ versus 0, for different values of I$,l, and again these plots were 
found to merge as closely as they do in figure 5 and to have the same shape. 

Since the physical realizability of K H  modes cannot be satisfactorily ascertained 
on the basis of the sign of Y, when ci =I= 0, this aspect will be taken up later. 

7. The resonant mode class 
We now look a t  certain features of the R mode class. It has been mentioned earlier 

that this mode is characterized by high values of @,I and c, (+ 1 ) .  That this is the 
'panel-flutter' mode can be seen from a figure similar to figure 6 where $,, c ,  and 
B,, were plotted versus 8. This showed that $, is neither predominantly real nor 
approximately a constant. However, B,, is approximately constant a t  180" over the 
entire range of 8, as typically expected in panel flutter. Reference to figure 6 shows 
that O,, varies continuously with 8 for the TS modes, whereas for K H  and R modes 
Opa is approximately constant a t  180". This latter reason lends further justification 
in classifying K H  and R modes as flow-induced surface instabilities FISI as 
Carpenter & Garrad (1985, 1986) have done. 

The reason for the difference in behaviour of $, in the R mode class, compared to 
the TS- and KH-mode classes, is understood from figure 14. Here, the real and 
imaginary parts of the $-functions (for = 24 with different values of 8) are plotted 
for the R modes. It is seen that the shapes of &are strongly dependent on l # w l  and 
0 in the main range of y, quite in contrast to the other two mode classes. This is 
mainly because the value of @,I is large. Therefore, as may be inferred from ( l l ) ,  
p,,, cannot be expectcd to be a constant. Also it may be inferred from (12) that 
although the admittance Y will remain bounded in the limit I$,[ + 03, Y will not 
show any sinusoidal bchaviour with 0. This is also seen from (35a, b )  and (36a,  b )  in 
which, unless $, is approximately a constant, no sinusoidal behaviour may be 
expected of Y .  Plots of Y,, Y, versus 0 are therefore not given for the R modes at  this 
stage. 

It may be mentioned here that the physical realizability of R modes cannot 
be ascertained satisfactorily on the basis of the sign of Y, for c, + 0, except when 
c, = 0 exactly. Thus, irregular variation of Y,, Y, with 8 is not of much consequence 
at  this stage, and the question of physical realizability of R modes is also deferred 
until the next section. 

An approximate theory may still be postulated for the behaviour of c,, c, with 0 for 
the R mode class, based on the formal solution (20). We assume that the limiting 
behaviour of the R mode class is given by + co, and that the disturbances are 
neutrally stable in the limiting state. Further, @,I + co is compatible only when the 
critical point moves to infinity, in which case the limiting value of c is given as 
cE = 1 + i0. Henceforth subscript R will be used to depict this limiting state. Also, in 
using the formal solution (20), care must be taken to remember, as in the KH case 
earlier, that the forms of the fundamental solutions $2, $3 are not the same as in 
the Tollmien-Schlichting problem. Nevertheless, and $2 still typify the two 
inviscid solutions and 43 the viscous solution. 

As before, the deviation from the limiting state is given by 6c, with c = cE + 6c. 
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0 
Y 

FIGURE 14. Curves for 6 versus y for the R mode class. Figures in parentheses indicate lqw1 and 
0 (degrees) according to the format (1~,,,1,19). -, $*; ---, $i. 

Also l/\&,l N O(6c) since for 
limit one obtains the limiting value of cR as 

--f w,6c +. 0. Upon expanding (20) and going to the 

It can be seen from (44) that  although the limiting value exists, we cannot prove that 
cR = 1 ,  and this continues to be a heuristic assumption. However Carpenter & 
Garrad (1986) have proved this result. Thereafter, upon expanding (20), substituting 
(44) and retaining terms up to 0(6c) ,  one obtains, as before, that 

where A, is a complex constant defined as 
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FIGURE 15. Normalized curves for c, and c,, viz. (cr- 1) @J, ci I&, versus 0 for different values 
of I&. Results are for the R mode class. 

where A and A ,  are respectively given by (26) and ( 2 7 ) ,  and the expression in square 
brackets in (46) is evaluated a t  the limit c = cR. 

The expressions for Fc, and 6ci are now given as below 

Thus it is seen from (47) and (48) that 6cr and Fci again depict sinusoidal behaviour 
with 8, although this time they scale with l/&J, instead of as earlier in the TS 
and KH mode classes. Plots of Fer@wl, 6cil&l versus 8 are given in figure 15, where 
6cr = c,- 1 and 6ci = ci (since cR = 1 +i0). From the figure there is some approximate 
confirmation of the simple theory outlined earlier. Also the phase 8, of A ,  is given as 

We conclude this section with the general remark that for both the KH and R 
mode classes 6ci = ci. Therefore sinusoidal behaviour of ci (i.c. 6ci) with 8 implies that 

8, %5 0". 
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in approximately one half of the cycle 0'-360' of 8, ci is negative. Moreover, for the 
TS mode class also, there is a wide range of 8 in which ci is negative. It is therefore 
logical to try and ascertain the physical realizability of the ci < 0 region. This is 
discussed next. 

8. The physical realizability of modes 
The question of physical realizability of modes, particularly those in the stable 

regions predicted by the kinematic model, has been mentioned earlier. It was pointed 
out that, except when ci = 0 exactly, the sign of Y, is not a sufficiently reliable index 
for ascertaining physical realizability, particularly for the KH and R modes. We 
evolve here a generalized procedure for ascertaining physical realizability by looking 
a t  the second expression for admittance Yo, based on the solid side, as given by (14). 
This expression for Yo is based on the Benjamin-Landahl model for a stretched 
membrane. However, as in earlier discussions, we shall consider that the parameters 
co and d in (14) are sufficiently generalized, and represent the local equivalent values 
for any complex model proposed for the backing compliant layer, at every set of 
operational conditions. Thereafter the limits that will be set on physical realizability 
are that neither ci nor d should be negative. The equivalent ci cannot be negative 
because that would amount to the compliant surface having negative resilience even 
to the static loading of the upper fluid. The equivalent d cannot be negative because 
a passive surface cannot irreversibly transfer energy to the upper fluid. It could be 
speculated however that a dolphin might, by activating its muscles and regulating 
its blood flow, be able to actively interact with the surrounding fluid and thus 
simulate 'negative damping'. Were it not for the fact that 'negative damping' could 
create conditions that would inhibit instabilities, as we shall see subsequently, it 
would probably not be worth speculating on such a possibility. However, for present 
purposes we will stipulate that the equivalent d cannot be negative in passive 
surfaces. 

The procedure hereafter is to calculate co and d for chosen values of m, from 
the results for the admittance Y based on the kinematic model. Remembering that 
Y = Yo, we look a t  the separate equations for Y, and based on (14): 

where 

c,(c: + c; - C i )  

q =  D 

D = m a  
a 

Five representative points in the (a ,  R)-plane, referred to earlier, were investigated. 
These are a t  (0.733,2562.8), (1.25,2500), (0.4,2500), (0.03,2500) and (0.4,200). Of 
these, detailed results and plots for the first point, a t  a = 0.733 and R = 2562.8, are 
given herein. The results a t  the other points are generally similar, and any significant 
differences will be discussed here. The values of m chosen were 1,  1.5 and 2. No major 
qualitative changes were observed for the values of m in this range. Therefore results 
based on m = 2 are reported here for easy comparison with Landahl's (1962) results. 
Further, following Landahl, for a < 0.5, m was modified to m = 0.5/a2 to avoid 
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FIGURE 16. Back-calculated values of co and d plotted versus 8, with I&,[ = 0.5. Results are for 
the TS mode class. 

unwieldy values of D (see (51)). In this way, part of the effect of the spring stiffness 
of the compliant layer was retained in the formulation. Typical sets of results are 
given in tables 1,  2 and 3.t  

Figure 16 gives results for the TS mode class for l&J = 0.5 with m = 2. The plots 
for the back-calculated values of co and d immediately give us a reliable picture of the 
region in 8 that is physically realizable. this being the region where both co and d are 
positive. Actually when cg > 0 then a positive and a negative root of co are obtained, 
representing respectively the downstream and upstream surface waves. However 
when cf < 0, no real value for co is obtained. In  figure 16 and in subsequent such 
figures, only the positive root of cf is plotted for cf > 0. It is seen in figure 16 that in 
the region where > 0 cg < 0 and thus this region is not physically realizable. Thus 
the zero-crossing of c, close to B z 0" is physically not realizable. whereas that close 
to  8 z 180" is. For the latter, co z 1 and c, z 0.3-0.5. It may be seen from (49) that  
with a large separation between co and c,, d will follow Y, in the region c, z 0 (with 
0 %  180") and this is exactly what the figure reveals. Thus a few important and 

t Tables 1 ,  2 and 3 are available from the authors or the Editor 
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obvious conclusions may be drawn from the results. First that  increase in d leads to 
destabilization and this is in line with Benjamin (1960) and Landahl's (1962) 
findings. Secondly that the neutral stability point for TS modes is near 0 M 180". 
Thirdly, the physically realizable stable zone, when it exists, is very small in range 
(in 0) as compared to the unstable zone. Fourthly, in view of this third reason, small 
changes in the parameters of the compliant surface, or shifting to other points in the 
(a. R)-plane, can cause a near-neutral situation to easily change from stability to 
instability or vice versa, a fact that is responsible for the existence of so many 
different kinds of neutral curves for the TS modes in the earlier literature. 
Accordingly, with a typical set of values like m = 2.0, co = 1 and d = 0.01, as chosen 
by Landahl (1962), one would hover around the region c, z 0,B % 180" in the entire 
(a, R)-plane, sometimes in the region when ci < 0 and sometimes in c, > 0. Thus, 
stabilization of TS modes poses a critical design problem and the best way to handle 
the situation, in our opinion, is not to try to stabilize the TS modes but to  create 
conditions so that they do not exist. 

The results also provide indirect confirmation of Landahl's (1962) and Benjamin's 
(1963) contention that the TS-modes are 'Class A' ,  that is energy deficient, because, 
in the region near c, M 0 , B  x 180" in figure 16, it is seen that the addition of damping 
leads to destabilization. 

The results a t  other points in the (a,R)-plane are broadly similar to the above, 
except that the points (0.03,2500) and (0.4,200), respectively for very low a and very 
low R. are so far removed from the rigid-wall neutral curve that the rigid-wall value 
for c, at these points is already very large and negative. Thus in these regions the 
physically realizable stable region exists over a much larger range in 13. So in the 
pliable-wall case also, the stabilization of TS modes is not a problem either a t  very 
low a or a t  very low R, as in the rigid-wall case. 

Next we consider the results for the KH mode class. The back-calculated c,, and d 
are plotted in figure 17, with m = 2, l$wl = 0.1, a = 0.733 and R = 2562.8. The first 
feature that strikes us is that the curves for Y, and d do not follow each other even 
near the regions of c, M 0. Thus physical realizability has to be ascertained based on 
the signs of c,, and d .  It is seen further that the zero-crossing of c, near 0 M 30" (i.e. 
nearer to 0 = 0") is physically not realizable since this is in the region of d < 0. The 
other zero-crossing of c,, near 0 M 210" (i.e. nearer to 8 = 180°), is physically 
realizable. However, certain interesting and unexpected features are revealed for this 
region. It is seen that whereas c,, is low as expected, having values of O.l-O.5, and that 
c, is of the order of ci, unexpectedly the valuc of d is very high; being d - 5 ,  
l$wl = 0.1 to d - 1, &,I = 1.0. Moreover, it is seen from the same figure that both 
co and d arc rclativcly stationary in the region 0 M 210", that is in the region of (the 
physically realizable) ci M 0. This feature makes the stability of these modes critically 
dependent on the values of co and d for a given m, because once a mode is brought 
into existence, close to  neutrality, then even slight changes in the values of co and d 
could render the mode stable or unstable, Therefore, drift in values of c,, and d ,  during 
operation, could also easily cause transition from stability to instability or vice versa, 
giving an impression that the system tends to stabilize or destabilize 'of its own' in 
a near-neutral situation. 

The broad features of the mode (in the limited context of the region near c, z 0 
with 0 M 210') make it appear that the mode could be the one found by Landahl 
(1962) which is 'Class B'  for upstream-travelling and 'Class A '  for downstream- 
travelling waves. Carpenter & Garrad ( 1986) have called this low-speed travelling 
wave flutter. However, the 'Class A '  or 'Class B'  features are not readily identifiable 
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FIGURE 17. Back-calculated values of co and d plotted versus 8, with I$+,/ = 0.1. Results are for 
the KH mode class. 

from the present results. It seems that the plot for d near ci z 0 , 8  z 180" has a 
minimum with a flatfish bottom. And, 'Class A' and 'Class B'  behaviour could be 
surmised to exist respectively along the right-side and left-side rising limbs in the 
plot for d. But again, for both these limits, c, > 0, i.e. the waves travel downstream. 
The confluence of the two situations, i.e. the region of the flat minimum of d ,  seems 
therefore to show 'Class C '  features, in which case the mode would seem to be closer 
to static divergence since c, is small. It should be mentioned that the classification 
of static divergence by energy analysis is a tricky matter, as has been discussed in 
detail by Carpenter & Garrad (1986). Thus, owing to these somewhat conflicting 
details, we refrain from making any classification based on energy analysis. And as 
already discussed earlier herein, we term the mode class (i.e. the full 0"-360" loop in 
8, and not the particular set of modes near ci z 0,8 z 180") the KH mode class. 

The curves in figure 17 reveal another interesting feature. It is seen that the curves 
for co and d develop singularities across the zero-crossings of the c,  versus 8 curves. 
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This can be explained from (49)-(51). It is seen that when c, and ci are small, and 
c,+0, then from (50) ci is approximately given as 

Yi D 
c; %---, 

cr 

where D is given by (51) and is always positive. Thus if Yi < 0 at c, = 0, then cf 
approaches + OC) or - co with the same sign as c, as c, + 0, and with the opposite sign 
as c, when Yi > 0. Moreover, i t  is seen from (49) that though ci is large (which 
happens when c,+O), Y, has to remain bounded. Therefore D should also remain 
bounded. This gives 

d 
c;+ci- % 0. (53) a 

Incidentally (53) also keeps the numerator of (49) bounded. Thus, for c,+O, if 
ci < 0 then d --f co with the same sign as c;, and if c, > 0 then d + 00 with the opposite 
sign of c:. Whereas this singular behaviour of ci and d is not of much significance for 
the regular KH modes, this is of great significance in the transitional modes. 

The picture for the KH mode class a t  other points in the (a, R)-plane is similar. 
However, the points (0.03,2500) and (0.4,200), respectively for very low a and very 
low R, call for special mention. For such points the KH modes may be brought into 
existence for comparatively low values of d also, particularly for the points a t  low a. 
Nevertheless, except for the extreme regions of very low a and very low R, physically 
realizable KH modes can exist only for high values of d. Now, if Landahl (1962)-type 
values m = 2.0, co = 1 and d = 0.01 are specified, then there would be no possibility 
of triggering KH modes in the (a,R)-plane except either at very low a or a t  very 
low R. 

Next we consider the results for the resonant (R) mode class. Figure 18 gives the 
co and d curves for m = 2 a t  a = 0.733, R = 2562.8 for = 24. Immediately the 
reason for naming these 'resonant modes' becomes obvious, because the co and c, 
curves are of the same shape, with c, being slightly less than co everywhere. Moreover, 
it is seen from figure 18 that Y, is small compared to q, and Yi has a large negative 
value. This is because for high values of the integral in (1 1 )  is dominated mainly 
by the large value of &I. Thus with $w mainly behaving as fiw - 16wl, it is seen from 
(12) that the admittance Y will be dominated by a large negative Yi in the entire 
range of 19. 

( 2 7.0), it was found that the Y, and d curves 
do not follow each other but, for higher values of (see figure 18), the Y, and d 
curves do follow each other. Moreover, it appears also that both the zero-crossings 
of c,, one near I9 % 0" and the other near I9 2 200" (i.e. closer to 8 = 180"), are 
physically realizable, and that increase in the value of d stabilizes both these points 
of neutral stability. Thus there is a clear-cut 'Class B'  feature observable in line with 
Landahl and Benjamin's findings. 

Moreover, the entire region of ci < 0 (approximately half the cycle of 0-360" in 0) 
is physically realizable, as this corresponds to the region d > 0 and c: > 0. Thus an 
important conclusion is that near-neutral disturbances for R modes are easily 
stabilized by the increase of damping. Two other points call for attention. First that 
for ci = 0 m a r  8 z 0". c, > 1, and for ci = 0 near I9 % 180°, c, < 1. Thus, the neutral 
stability points for the R modes as reported by Landahl (1962), which were for c, < 1,  

For comparatively low values of 
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actually belong to the region B z 180". Secondly, we compare the behaviour of TS 
modes and R modes. It was seen for the TS modes that the entire region from 
6' x 180" to B z 360" was physically realizable but with ci > 0, i.e. unstable. And, 
sometimes a physically realizable 'stable pocket ' could be found near B z 180", for 
the narrow region in 0 bounded by ci < 0, Y, = 0 and ci = 0, Y, > 0, whereas, for the 
R modes the entire region from B x 0" to 6' x 180" is physically realizable with 
ci < 0, i.e. stable. Further, sometimes either near 0 z 0" or near 6' x 180", a physically 
realizable 'unstable pocket' can be found for a narrow region in B bounded by 
c, = 0,  Y, > O(d > 0) and c, > O,d = 0. An R-unstable pocket is shown in figure 19. 
Thus our conclusion is that  when R-mode instability occurs one has moved into an 
R-unstable pocket, and when TS-mode stability occurs one has moved into a TS 
stable pocket. It is now seen by comparison how very difficult it is to stabilize the TS 
modes, when these modes exist. 
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FIGURE 19. Curves for c, and d versus 0, with a n  enlarged scale for 6 in the range 188" < 0 < 220°, 
for @,J = 10. Results are for the R mode class and figure shows the existence of an 'unstable 
pocket '. 

The behaviour of d,  as shown in figure 18, may be deduced from (49)-(51). For the 
R modes it is known that ci z c: z IcIz. Thus it is seen from (49) that 

where D is already small because c: z lcI2. Thus for Y, to remain bounded, ci z - d / 2 a ,  
which incidentally renders D still smaller, as may be seen from (51). Moreover. it is 
seen from (50) that if is to  remain bounded for small D, then ci z (el2, which is the 
main characteristic of the R modes. Also, since we know that Y, < 0 for R modes 
(with large @J), it follows from (50) that c; > cf. All these features are reflected in 
figure 18. 

&'ith Landahl-type values of m = 2.0, co = 1 and d = 0.01, we see that it would not 
be difficult to land in an R unstable pocket for the R modes at  some point in thc 
(a ,  R)-plane. Thus the conflicting requirement on d ,  to be large in order to stabilize 
R modes and to be small in order to try to stabilize TS modes, makes it difficult to 
satisfactorily stabilize both over a wide range in the (a ,  R)-plane. In  our opinion, 
effort should be directed to eliminate both thesc modes rather than to try to stabilize 
both. 

The points in the (a ,  R)-plane a t  (0.03,2500) and a t  (0.4,200), respectively for low 
a and low R, did not show any major qualitative differences from the above. except 
that in both cases the zero-crossings in ci moved closer to  each other rather than 
bcing separated by approximately 180" in B as earlier. 
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are for the transitional mode class corresponding to = 5(1) as shown in figures 8 and 9. 

We now take a quick look a t  two of the important transitional mode classes. Again 
the chosen point is a t  a = 0.733, R = 2562.8, with m = 2.0. Figure 20 shows the mode 
class for which c, --f + co, ci --f + co, when 6 z 360", with = 5.0( l ) ,  i.e. for the first 
cycle of the = 5.0 curves in figures 8 and 9. Figure 21 shows the mode class for 
which cr+- co,ci++ co, when B z 360°, and this corresponds to  = 3.0(2) as 
shown in figures 8 and 9. It is seen from figure 20 that thc transitional mode class for 

= 5.0 shows part R behaviour especially in the region 6 z 180" to 6 z 360". The 
value of c, about 0.5 for 6' = 180". Thus, the R modes a t  comparatively low values 
of c, that were found by Landahl (1962) and others do not belong to the regular R 
mode class but to the transitional mode class. Fortunately this mode class is not very 
dangerous because mostly where ci > 0 ,d  < 0, it  is not physically realizable. 
However, it  is possible to obtain an unstable pocket of the R-mode type near 
B z 180", but such a pocket is easily stabilized by increasing the damping d.  Moreover, 
this type of transitional mode is not found for values of c, very much lower than 
c, z 0.5. For lower values of c, this type of transitional mode is replaced by the other 
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FIGURE 21. Back-calculated values of co and d plotted versus 8, for the case = 3.0(2). Results 
are for the transitional mode class corresponding to lTwl = 3.0(2) as shown in figures 8 and 9. 

shown in figure 21. Therefore, R-mode-type behaviour, even from a transitional 
mode class, is not expected at  values of c, very much lower than c, M 0.5. 

Next we look a t  the other transitional mode class shown in figure 21, for @,J = 3.0. 
Here, since c, + - co, ci + + co, when 8 M 360", there is a zero-crossing of c, near 
8 M 330", and the associated singularity of c: and d a t  c, = 0. The behaviour of this 
mode class in the region 8 M 180" to 8 M 360" is in part similar to that of KH-type 
modes at very low values of a. The left-side of the point of zero-crossing of c, in 
figure 21, where both co and d could be small and positive, and where ci is very large 
and positive, could be a very dangerous physically realizable unstable zone. This 
point will be further discussed in $9. 

9. Concluding remarks 
Various conclusions drawn from this study have already been mentioned at  the 

appropriate stages in the text. The major conclusions are that there are essentially 
three important mode classes: viz. TS, KH and R mode classes, and also two 
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important transitional mode classes. The results for the TS and R mode classes agree 
with those of earlier workers. However it is difficult to classify the KH mode class 
based on earlier work. Two important concepts evolve in connection with the TS and 
R mode classes, namely the existence of stable pockets for the TS mode class and 
unstable pockets for the R mode class. For both mode classes, approximately half the 
cycle in 0-360" of 6' is physically realizable. But. for the TS mode class most of the 
physically realizable range is unstable with an occasional small stable pocket And, 
for the R mode class most of the physically realizable range is stable with an 
occasional unstable pocket. Whereas the addition of damping stabilizes R modes it 
destabilizes TS modes. These conflicting requirements make it difficult to 
simultaneously stabilize both TS and R modes in the entire (a ,  &)-plane. 

In looking for a possible clue to a satisfactory stabilizing coating based on the 
present results. we recall our conclusion that both the TS and R modes (regular as 
well as transitional) should be altogether avoided rather than stabilized. Figures 
16-21 show that it is possible to achieve this by keeping the value of co as low as 
possible, that  is c,, z 0.26. Very low values of c,, however, make it difficult for the 
compliant surface to bear the static loading and so a compromise has to be effected. 
Along with a low value of c,,, a low value of d < 0.05 has also to be maintained so that 
the unstable (regular) KH modes are eliminated as well, except at very low values 
of a. The value of m may be kept in the range m = 1 to 2. Careful investigation shows 
that except for the transitional mode discussed in figure 21, all other modes are either 
stable or physically non-existent when c, and d are small. Indeed we ran a pilot 
survey of the (a ,  R)-plane with m = 1.0, c,, = 0.1 and d = 0.001, which showed that 
all the regular TS and R modes wcre stable or non-existent even up to R = 8000. 
However, a persistent instability was observed at various points somewhat below the 
lower limb of the rigid-wall neutral curve. A typical such point is at a = 0.4 and 
R = 3000. We checked that this instability was exactly of the type depicted in figure 
21. The scheme for stabilization suggested herein seems to be a good compromise. At 
least one departure from past effects is made in that it is suggested that the TS modes 
and R modes should be avoided rather than stabilized. Our results arc. however, 
unable to explain Kramer's. However. Carpcnter & Garrad (1985) were able to 
demonstrate a reduction in the growth rate of TS waves in a Kramer-type 
surface. 

We would like to mention an important experimental result of Babenko & Kozlov 
(19'i3), referred to by Carpenter & Garrad (1985). It appears that Babcnko & Kozlov 
experimentally studied the stability of flow past a compliant surface made of 
polyurethane foam with and without a tensioned membrane. The best results were 
obtained for a flat strip of polyurethane foam without a tensioned membrane. This 
way the critical Reynolds number was approximatcly doubled and the amplification 
ratc halved, as compared to the rigid-wall casc. The addition of a tensioned 
membrane increased the region of instability compared to the rigid wall. If we 
compare Babenko & Kozlov's results with the present theoreticd results wc find a 
good measure of consistency. The absence of a tensioned mcmbrane. and the soft 
structure of polyurethane foam. keep the value of co small. Also, in its rubbery state 
a t  ordinary temperatures, this material has a low value of d 

We now offer some comments on negative damping. It is seen that if co i s  kept 
small ( z 0.25 or so) and d has a small negative value. of the order d = -0.1 to -0.2, 
then all the earlier mentioned advantagcs are retained and. in addition. the 
contingency lcading to instability as in figurc 21, or for thc low a KH modes. is 
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avoided. Instead, as may be seen from figure 17, regular KH modes may exist but 
only in the damped region c, < 0 a t  values of 8 that are less than at the first zero- 
crossing of c, in the 0"-360" cycle of 8. Mathematically therefore, a negative value of 
d along with a comparatively small value of co offers a very interesting possibility of 
stabilization, first by excluding the TS and R modes and secondly by allowing KH 
modes to exist only in the damped region. The natural question that follows is 
whether an aquatic animal like a dolphin can simulate negative damping, and 
whcther a manmade compliant surface can in future be made to do so. Both 
questions are outside the scope of this paper, but we outline what may possibly be 
entailed in the simulation of negative damping. Carpenter & Garrad (1985) have 
shown that the fluctuating pressure p ,  of the substrate fluid behaves like a 
conventional damping term when the substrate depth is small. Thus, were it to be 
possible to sense this fluctuating pressure and simultaneously generate and 
superpose, by a feedback mechanism, a fluctuating pressure that is larger in 
magnitude than p ,  but of opposite sign, then the overall effect would be to simulate 
negative damping, Whether a dolphin does this or not, to 'shake off' the instabilities, 
one cannot say at this stage. but the present results build a case to follow up such 
a conjecture. Recently, progress has been made in the study of stabilization by active 
surfaces, cf. Metcalfe et al. (1986), and others. 

We are grateful to Professor J. T. Stuart of Imperial College, London, 
Professor M. Gaster of the University of Cambridge and Dr P. W. Carpenter of the 
University of Exeter for many valuable suggestions and encouragement,. 
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